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Abstract— We study the maximum edge-disjoint path
problem (MEDP) in planar graphs. We are given a set of
terminal pairs and wish to find a maximum routable subset of
demands. That is, a subset of demands that can be connected
by edge-disjoint paths. It is well-known that there is an
integrality gap of order square root of the number of nodes for
this problem even on a grid-like graph, and hence in planar
graphs (Garg et al.). In contrast, Chekuri et al. show that for
planar graphs, if LP is the optimal solution to the natural linear
programming relaxation for MEDP, then there is a subset of
size OPT over the logarithm of the number of nodes which
is routable with congestion 2. Subsequently they showed that
it is possible to get within a constant factor of the optimal
solution with congestion 4 instead of 2. We strengthen this
latter result to show that a constant approximation is possible
also with congestion 2 (and this is tight via the integrality
gap grid example). We use a basic framework from work by
Chekuri et al. At the heart of their approach is a 2-phase
algorithm that selects an Okamura-Seymour instance. Each
of their phases incurs a factor 2 congestion. It is possible
to reduce one of the phases to have congestion 1. In order
to achieve an overall congestion 2, however, the two phases
must share capacity more carefully. For the Phase 1 problem,
we extract a problem called rooted clustering that appears to
be an interesting problem class in itself.

Keywords-Network flows, edge-disjoint paths, confluent
flows, clustering

1. INTRODUCTION

We consider the maximum (undirected) edge-disjoint
path problem (MEDP) in planar graphs. MEDP is for-
mulated as follows. We are given a planar undirected
graph G = (V,E) and a set of node pairs (de-
mands) D = {s1t1, s2t2, . . . , sktk}. Define X =
{s1, s2, . . . , sk, t1, t2, . . . , tk}. The nodes in X are
called terminals and the two terminals in a pair are
called siblings. We can typically assume that the termi-
nals are distinct and thus the demands form a matching.
For v ∈ X we denote its sibling by σ(v). We call a
subset S ⊆ D routable if there is a collection of edge-
disjoint paths joining the pairs in S. The objective of
MEDP is to find a maximum routable subset of D. More
generally, each edge e may have an integer capacity
u(e), and we seek a collection of paths such that each
edge is contained in at most u(e) paths. For such a

solution, if it includes a path joining the demand pair
siti, then the demand is said to be routed in the solution.

Consider the natural linear programming formulation
(LP) for MEDP:

max

k∑
i=1

xi s.t. (1)

xi −
∑
P∈Pi

f(P ) = 0 1 ≤ i ≤ k∑
P :e∈P

f(P ) ≤ u(e) ∀e ∈ E

xi, f(P ) ∈ [0, 1] 1 ≤ i ≤ k, P ∈ P

where Pi is the set of paths between si and ti and
P = ∪ki=1Pi is the set of all paths in G. Let OPT denote
its optimal value. It is well-known that (1) may have a
Ω(
√
n) integrality gap [9] in the worst case, even in

undirected planar graphs as shown by Fig. 1.
Note that for the grid example, one can actually

route all demands if each edge may be used twice.
Given the large integrality gap, it becomes natural to
inquire about the affect of low congestion routings on
approximability. An α-congested solution corresponds
to a subset of demands routed via a path collection P
where each edge e is contained in at most α (or αu(e))
paths in the collection. It is well-known that Ω(OPT)
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Figure 1. An Ω(
√
n) integrality gap. Each node is split into two,

as depicted.



may be achieved in a general graph with O(log n)-
congestion via randomized rounding [16]. In a recent
advance, [1] found a polylogarithmic approximation for
MEDP using O(poly log log n) congestion. The focus
of the present paper is the approximability of MEDP
with O(1) congestion in planar graphs. Kleinberg and
Tardos, in their study of grid-like planar graphs [13],
implicitly suggested that a polylogarithmic approxima-
tion may be possible with congestion 2 in planar graphs;
they directly ask whether an O(log n)-approximation is
possible in Eulerian planar graphs with congestion 1.
In [3], an O(log n) approximation is given for planar
graphs if edge congestion 2 is allowed. This framework
was later employed in [14] to get an O(log2 n) approx-
imation with congestion 1 for Eulerian planar graphs;
this was strengthened to O(log n) in [12]. A different
approach was ultimately devised [5] to prove that there
is a constant factor approximation in planar graphs if
congestion 4 is allowed. It was left open whether a
constant factor approximation was possible with at most
congestion 2 however. Due to the grid example, this
would be a tight result. As our main result we resolve
this question. Our approximation is with respect to the
above multiflow LP relaxation:

Theorem 1.1. If G is planar, and all edge capacities
are at least 2, then the LP (1) for MEDP has a constant
integrality gap. Moreover, there is a polytime algorithm
which converts a fractional solution for MEDP with total
flow F , into an integral congestion 2 solution with total
flow Ω(F ).

We now give a very high level view of the algorithm
from [5] which we refer to as PLANE-EDP4. More
details are given in Section 3. After some standard
reductions (e.g., to bounded degree graphs, and match-
ing demands), PLANE-EDP4 repeatedly finds “sparse”
cuts. Each cut breaks the graph into two planar parts
G1, G2 (where G1 is chosen to be minimal in a certain
sense). The flow lost between the two parts (i.e., flow
crossing the cut) is then “charged” to the flow within
G1. They then apply a one-time procedure to extract
a large integrally-routed set of demands within G1.
After this, they recurse on G2. Thus the meat of the
algorithm is within the one-time routing procedure. This
part consists primarily of a two-phase algorithm which
converts a fractional routing into an integral one with
congestion 4. This subroutine has a clustering phase and
a routing phase. A factor of 2 congestion arises in each
phase. Using an improved clustering scheme based on
confluent flows, we are able to improve Phase 1 to only
incur congestion 1 – Section 3. In order to achieve an
overall congestion 2, however, Phase 1 must carefully
lend some capacity to the second phase – Section 4.1.
One may extract a stand-alone problem from the Phase 1

analysis. We call this “rooted clustering”, and it is some-
how related to both unsplittable and confluent flows –
see Section 2. We briefly discuss this subproblem now.

A key step in many approximation algorithms in-
volves grouping of some weighted terminals si, di in a
graph into so-called clusters. For instance, in [11], [2],
[4] a collection of edge-disjoint connected subgraphs
are sought such that each subgraph contains Θ(1) of
demand. Such clusters are usually easy to construct
greedily from a spanning tree. In [5], however, there
is an additional requirement that we are also given
a face boundary C in the planar graph, and each
cluster should contain a path to this face. Naturally, C
could be identified with a single “sink” node t, and
so with this additional requirement, we refer to this as
a rooted clustering problem. A rooted clustering with
edge congestion 2 is obtained in [5]. Unfortunately, we
show that edge-disjoint clusterings of this type are not
possible for directed graphs. Instead we show that if we
are only concerned with “capturing” a constant fraction
of demands between pairs, say si, ti, then such an edge-
disjoint rooted clustering can be found. These results are
described in Section 2 and are obtained by modifying
a confluent flow algorithm in [6].

2. ROOTED CLUSTERING

In this section we consider a problem where one
must groom demands into “bundles” which then share a
single path to some fixed destination node. The problem
has common features with the single-sink unsplittable
multiflow problem [7], but solutions to our grooming
problem must satisfy additional requirements which
makes them (seemingly) less straightforward. We derive
one result (Theorem 2.3) used later in the disjoint path
algorithm of Section 3.

In the rooted clustering problem we are given a
graph G = (V,E) (not necessarily simple, and either
directed or undirected) with a specified root node t ∈ V .
We are also given terminals s1, . . . , sk each with a
demand di ∈ [0, 1]. A (unsplittable) rooted clustering
is a collection of connected subgraphs (called clus-
ters) H1, . . . ,Hc each containing t, and an assignment
f : {s1, . . . , sk} → {H1, . . . ,Hc}. In other words, if
f(si) = Hj , then terminal si is said to be assigned to
cluster Hj ; we also say that si is covered by Hj . In
addition we have: ∑

si assigned to Hj

di = O(1)

(note that in some cases, we need the sum to be
Θ(1); in either case, we are not concerned with the
hidden constants). The congestion of a clustering is
the maximum number of times that any edge appears
in the list of clusters. If the congestion is 1, then



we refer to it as an edge-disjoint rooted clustering.
Note that a node (including any terminal) may appear
in several clusters. However, we require that demand
from each terminal is assigned to a single cluster. This
condition can be relaxed to obtain a splittable version
of the problem, where a demand of di may be split
across multiple clusters. We remark that the existence of
an (unsplittable) edge-disjoint rooted clustering implies
the existence of a single-sink unsplittable flow for the
demands di, with “congestion” at most the maximum
total demand of a cluster (cf. [7] for definitions and
related work). In fact, rooted clustering seems to live
“between” unsplittable flows and confluent flows as we
see later.

We call an instance edge-normalized if there is a
network flow that routes demand di from each si to t,
and sends flow of at most 1 on each edge of G. Since
we study single-sink instances (rooted clustering) this
simply means that the natural cut condition holds. Node-
normalization is defined similarly. Clearly any node-
normalized instance is (edge-) normalized. As with
unsplittable and confluent flows, one often assumes
that an instance is normalized, since it is an obvious
necessary condition for a rooted clustering to exist.

In [5], the following is (essentially) shown.

Theorem 2.1 ([5]). If G is bounded degree, and
G, t, si, di is an edge-normalized instance, then there
is a congestion 2 rooted clustering of the demands.

A natural goal is to try to strengthen this to find
edge-disjoint rooted clusters. Unfortunately, this is not
possible, at least for directed graphs. This is shown by
the following example where the bottom layer nodes are
all adjacent to the root.1 In the directed setting, consider
a cluster containing the top node. The circled nodes at
layer i all have demands 1/i. Since the cluster must
contain a directed path P to the root, and all arcs are
directed downwards, every terminal on this path must
actually be contained in the same cluster if we require
edge-disjointness. Hence this cluster includes at least
one terminal of demand 1

i at each level i, and hence it
has a total demand of

∑k
i=1

1
i = Ω(log n), which is too

large.
We thus focus on so-called incomplete clusterings,

which will be sufficient for our application to disjoint
paths.

2.1. Incomplete and Partial Clustering

To avoid the difficulty of the previous example, we
relax the condition that we have a complete clustering,
where each terminal is assigned to some cluster. An
incomplete clustering is thus one where some demands

1This example is essentially given in [6] as an example of a
Ω(logn) gap for the congestion minimization LP for confluent flows.

Figure 2. There is no arc-disjoint rooted total clustering (splittable
or unsplittable).

may not be assigned to a cluster; demands that are
assigned are said to be covered by the clustering. We
show that one can always cluster a large fraction of
demands with edge-disjoint clusters.

Theorem 2.2 (Unsplittable Incomplete Clustering). For
any κ ≥ 1 and any edge-normalized instance, there is
an edge-disjoint rooted clustering that covers at least
κ−1

2κ(κ+2)∆ of the total demand ∆ =
∑
i di.

To maximize the covered portion of the demand, the
optimal value for κ is 1 +

√
3 which gives a routing for

approximately 0.0670∆ of the demand.
We also consider a version of the rooted clustering

problem that is geared for our application to MEDP.
First, we allow partial clustering where the full demand
di from a terminal need not be assigned. (One may
even allow splittable clustering where its demand may
be assigned to different clusters, although we do not
need this version.) Second, we consider instances where
terminals come in pairs si, ti, each with a value di.
(Wlog, the terminals are all distinct.) For each i, we
say that si, ti are siblings. A clustering captures x ≤ di
of pair i’s demand, if at least x demand from each of
si, ti is assigned to some cluster (not necessarily the
same one). Specifically we prove:

Theorem 2.3 (Paired Cluster Capture). For any κ ≥ 2,
and any edge-normalized instance, there is an edge-
disjoint rooted partial clustering satisfying at least
κ−1

κ(κ+2)∆ of the total demand. If terminals come in pairs,
then we can capture at least κ−2

2κ(κ+2)∆ of the pairwise
demand.

In the paired case, the κ value that maximizes the
routed demand is 2

√
2 + 2 which gives a routing for



approximately 0.0429∆ of the demand.
We now turn attention to proving these results. Our

first step is to show that we may work in node-
normalized instances.

2.2. Reducing to Node-Normalized Instances.

We make a trivial but important observation. Namely
that we may work in node-capacitated instances and
hence we may employ concepts from the theory of
uniform-capacity confluent flows. In a sense then, rooted
clustering lies “between” unsplittable and uniform-
capacity confluent flows.

If our instance is undirected, then we first solve the
flow from terminals in a standard bidirected version of
G, i.e., each edge uv becomes two unit capacity edges
(u, v), (v, u). In all cases, we can assume that any node
v has been split into v−, v+ so that any flow destined to
t through v traverses a node arc of the form (v−, v+);
the node arc has infinite capacity. We also place the
demand dv at node v on the node v−. We solve our
standard flow in this graph, and assume wlog that it has
acyclic support. If the total load on every node arc is
at most 1, then the instance is node-normalized already.
Otherwise, if (v−, v+) has load more than one, we make
multiple copies of the node arc and modify the flow so
that each of them has load at most 1. (N.B. we will not
require this reduction to preserve planarity.)

We modify the flow as follows. Let the in-neighbors
of v in D be u1, u2, . . . , up. Let dv be the demand
of node v. We add new arcs of the form (v−i , v

+
i )

as follows. Let fi denote the original flow on the arc
ei from ui to v. We first move the demand dv to
v−1 . We then redirect the flow on e1, e2, . . . , ej until
dv +

∑
i fi > 1. Let σ be the surplus amount. We

then modify each ei : i ≤ j to have head v−1 , but in
addition, we only send fj − σ on the last edge ej . We
then open a new node arc (v−2 , v

+
2 ) and make an extra

copy of ej whose head is v−2 , and carries the surplus
flow σ. We repeat this process until we have dealt with
all the incoming flows for v. See Fig. 3. There is some
danger that an edge-disjoint rooted clustering could lead
to a congestion 2 clustering in the original graph. This
is because we include two copies of some arcs, such
as ej above. This is not an issue however, since our
clusters are based on confluent flow routing. In any such
routing, there is at most one edge out of any node (and
in particular uj).

We now work in this node-capacitated instance, and
apply ideas from [6] for computing a confluent flow.
Note that such a confluent flow actually gives a node
disjoint rooted clustering (not just edge-disjoint). Map-
ping this back to the original graph (be it planar or
not) may destroy this, but it yields valid edge-disjoint
clusters in the original G.
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Figure 3. Reducing to node-normalized instances.

2.3. From Confluent Flows to Clusters

Our approach is based on the demand maximization
algorithm for confluent flows from [6]; we modify their
algorithm and provide an analysis to obtain the Paired
Cluster Capture Theorem. In the following, we assume
that we are given a node-normalized instance (with
possible loss of factor 2 - see Section 2.2.)

Throughout, we let D = (V,A) be the simple
input digraph (the undirected case follows from the
directed version) and we suppose the instance is node-
normalized. In particular, we have a flow vector f that
satisfies the routing of some demands si, di to a single
sink t ∈ V , with a maximum flow (i.e., load) of 1
out of each node. A confluent flow of the demands
to t is a network flow that uses at most one arc out
of any node. Thus the support of the flow is just an
arborescence rooted at t. Let the in-neighbhours of t
be {c1, c2, . . . , ck}. Clearly the maximum load at any
node occurs at one of the ci’s. Hence, as is done in
[6], we actually ignore the sink t, and consider only
the ci’s. These are called the sinks since wlog we may
assume our starting flow f has an acyclic support and
also that there are no arcs between a ci and cj (since
we only require flow to reach one of the sinks). As the
algorithm runs, we let b denote the vector of node loads
of the sinks; to start, each bi ≤ 1 but in time, some of
these values may become quite large.

The algorithm [6] repeatedly performs three op-
erations: node aggregation, sawtooth cycle breaking,
and pivoting. These operations allow the algorithm to
gradually contract “marked” arcs until the only nodes
remaining are the sinks ci. Reversing the contractions
then reveals a collection of node disjoint arborescences
rooted at the ci’s. They show that if there are still non-
sink nodes, then either there is an arc with no flow
which can then be deleted, or one of these 3 operations
is still possible. We now define the operations in detail.

A frontier node is a node u that has an out-
neighbhour which is a sink, i.e., there is an arc (u, cj)
for some j. (By our assumptions, no sink is a frontier
node.) A decided node is a frontier node that has exactly
one out-neighbhour. Node aggregation is an operation



that refers to marking and then contracting an arc (u, cj)
from some decided node. It is marked since it will
become part of our confluent flow tree.

If there is no node aggregation available, the algo-
rithm looks at the residual digraph D̂, obtained from
D − t, by adding a reverse arc (cj , u) for every arc
of the form (u, cj) where u is some frontier node. A
simple directed cycle of length greater than two in D̂
is called a sawtooth cycle.

The sawtooth cycle breaking operation goes as fol-
lows. Consider some sawtooth cycle S. In D, the
sawtooth cycle is a cycle with forward arcs, i.e.: arcs
of D, and reverse arcs, i.e.: arcs of D that are used in
the reverse direction. The operation increases flow on
reverse arcs and decreases flow on forward arcs until at
least one of the arcs has its flow decreased to 0; that
arc may then be eliminated from D̂. (See pseudo-code
below.) Note that a reverse arc (cj , u) is always from
a sink to a frontier node and so any reverse subpath of
S has length 1 exactly (due to contractions, this edge
may actually correspond to an induced path P if we
unshrink marked edges). It follows that the operation
does not increase the load of any node (except implicitly
any internal nodes of P ).

BREAKSAWTOOTH(D, S , f )
fmin = min{f(e) : e ∈ S}
For all forward arcs e of S

f(e)← f(e)− fmin
For all reverse arcs e of S

f(e)← f(e) + fmin

Finally we consider pivot operations. A remote node
is some sink cj that has only one in-neighbhour u, called
a pivot node, amongst the frontier nodes, but u also has
at least one other sink out-neighbhour ci. If there are
no node aggregations or sawtooth cycles, one can show
there exists a remote node.

The pivot operation takes a pivot node with two out-
neighbhours ci, cj where the latter is remote. It then
shunts the flow on these two out-arcs, one way or the
other. For our implementation, we provide a threshold
parameter κo to decide which way to shunt.

PIVOT(D, u, b, f )
If bj − f(u, cj) ≤ κ

Remove (u, ci)
f(u, cj)← f(u, cj) + f(u, ci)

Else
Remove (u, cj)
f(u, ci)← f(u, ci) + f(u, cj)
Deactivate sink cj

Note that pivoting is the only operation that increases
the load at some sink.

As long as the load of remote sink cj is “small”,
then it will not be deactivated. However, if its load goes
above κ + 1, then the flow is shunted elsewhere and
cj can be shut down or deactivated. The reason that
κ + 1 is an upper bound on the cutoff for deactivation
is because f(u, cj) ≤ 1, and hence if bj > κ+ 1, then
bj − f(u, cj) > κ. It follows that a remote node cj can
either be deactivated, or still has load at most κ+ 1.

In [6], for sink deactivation they use κ = 1/2. For our
application to clustering, we need to consider κ larger
than 1 with the optimal being 1 +

√
3. We believe that

other settings of κ may be useful in other contexts (e.g.,
setting κ = −1, where all pivots deactivate, appears a
promising version for the (open) problem of confluent
routing in O(1) rounds).

Overall, the algorithm runs in polytime, since at every
step a node or an arc is removed. It terminates when
only sinks remain. The marked arcs then correspond to
trees along which flow is routed confluently in the graph
D.

After running the algorithm, we say that a tree is
big if it has total demand greater than κ + 2. The key
idea is to show that by removing a small amount of the
demands, we no longer have any big trees. We can then
use the resulting trees to act as our clusters.

2.4. Analysis

We now present the proof of Theorem 2.3. The proof
for Theorem 2.2 uses similar arguments and is not
presented here.

Proof of Theorem 2.3: We call a pivot operation
bad if it sends flow into a sink whose current congestion
was greater than κ+ 2. Note that the sink’s congestion
could later decrease. Let A be the total amount of bad
pivoting which is done by the algorithm. When we
perform a pivot step, if a sink cj is not deactivated, then
it had congestion at most κ+ 1 (since node congestion
at each non-sink node remains at most 1 throughout the
algorithm). After pivoting the flow from ci into cj , cj
thus has congestion at most κ+ 2, i.e., the pivoted flow
is not bad so A does not increase.

Thus A increases only when a sink cj is deactivated
and then it increases because of flow routed to ci. This
increase is at most 1 since f(u, cj) is a most 1. If ν is the
number of deactivated sinks in the algorithm execution,
then we clearly have A ≤ ν. Note that any deactivated
tree (i.e., one obtained by unshrinking the marked arcs
leading into a deactivated sink) has total demand greater
than κ, and so κν < ∆ and thus A < ∆/κ.

Now consider the final solution, and any deactivated
tree whose sink had load more than κ + 2. Consider
throwing away demands from this tree to bring it down
to a maximum load of κ+ 2. If we do this for all trees,
the total demand lost is at most ∆/κ of the original



demand. Routing the remaining demand now results in
node congestion at most κ + 2 in each arborescence.
Hence scaling down the demands by a factor 1/(κ+ 2)
we route κ−1

κ(κ+2)∆ demand with node congestion 1.
If demands come in pairs, then eliminating a bad de-

mand may implicitly eliminate demand from its sibling.
(We are assuming ∆ accounts for the di from each
sibling.) Hence, the overall loss of pairwise demand
may be up to 2∆/κ. We are thus guaranteed a total
flow of at least κ−2

κ ∆ from terminals, such that any
pair of siblings route the same amount. Scaling down
these demands by κ + 2, these become flows of total
value at least

κ− 2

κ(κ+ 2)
∆

which are in rooted clusters with congestion 1. Dividing
by 2 gives a lower bound on the pairwise demand that
is captured.

3. THE CONGESTION 3 ALGORITHM FOR MEDP

3.1. Overview

We now describe the algorithm PLANE-EDP4 ([5]) as
well as one of our enhancements using rooted clusters
to obtain a congestion 3 algorithm for MEDP.

MEDP can be formulated as follows. We are given a
planar graph G = (V,E) and a multiset of node pairs
D = {s1t1, s2t2, . . . , sktk}. Pairs in D are also called
demands or demand edges/pairs. In the general form,
each edge of G also has an integer capacity u(e). A
subset (multiset possibly) S of demands is routable if
there exists a set of paths in G such that there is 1-
1 mapping from each pair in S to one of the paths,
and each edge lies in at most u(e) of these paths. The
objective of MEDP is to find a maximum size routable
set. By hanging pendant leaves of unit (or infinite!)
capacity, one may assume the demands form a match-
ing. This clearly does not change the optimal solution.
Hence we define X = {s1, s2, . . . , sk, t1, t2, . . . , tk} to
be the set of terminals, and for each v ∈ X , we denote
the (unique) other end of its demand edge by σ(v). We
refer to σ(v) as the sibling of v. In a moment, we see
that one may reduce (in polytime) the problem to the
unit capacity (edge-disjoint) case; the paper focuses on
that case.

We consider the natural LP relaxation of MEDP (1).
The flow sent on a path P is denoted by f(P ). The
variable xi is the total amount of flow that is going
to be sent from si to ti. We sometimes refer to

∑
i xi

as the profit of the LP solution. For v ∈ {si, ti}, let
fv be the total flow that is routed for this pair, i.e.:
fv = xi = fσ(v). fv is also be called the demand of
node v. It is well known that this problem can be solved
in polynomial time. We let OPT denote the optimal value

of the LP; the optimal value for MEDP is clearly less
than or equal to OPT.

By polyhedral facts (see Propositions 2.1, 2.2 of
[10]) one may assume that the maximum capacity is
polynomially bounded, hence we always assume the
unit capacity (edge-disjoint) case.

This LP relaxes a feasible solution in two ways. First,
we allow fractional xi whereas in the MEDP problem a
pair has xi ∈ {0, 1}. Second, we allow the demand for
a terminal pair to be routed along more than one path
instead of just one for the MEDP problem, i.e., in MEDP,
f is a 0-1 vector. Our goal is to turn any fractional
solution to LP, into a solution for MEDP that is within
a constant fraction of OPT, at the cost of some edge
congestion.

As in [5], we apply a polynomial-time preprocessing
phase to reduce the original graph to one where the
node degrees are upper bounded by 4. If G was Eulerian
and/or planar, these properties may also be preserved by
the transformation. The procedure is detailed in [8] and
[3]. Thus, we suppose, without loss of generality, that
every node has degree at most 4.

After this, the algorithm obtains a “sparse” cut asso-
ciated with a contour C. The cut is induced by nodes
on C and all of those nodes which lie in the (planar)
interior. Two subgraphs are then examined. One is the
graph inside C, call it G1. And the other is the planar
graph outside G1, call it G2. By sparsity (and bounded
degree), we can charge the lost flow (across the cut
between G1, G2) to G1, as long as we can capture a
constant fraction of demands in G1. We then recurse
on G2.

The heart of the algorithm is thus to find a constant-
factor, constant-congestion algorithm in G1. Using the
so-called 1-Cut reduction on G1, we reduce to the “hard
case”. This is when we have a 2-node-connected graph
GC , whose outside face is a simple cycle C. This graph
satisfies the following important property. Let fv denote
the total flow terminating at v on flow paths entirely
in GC . Then there is a single “sink” flow that routes
fv/M

∗ to C for each v (for some choice of constant
M∗).

At this point, PLANE-EDP4 uses a 2-phase algorithm
to obtain a large routable set in GC . We describe this
part in detail now.

3.2. Phase 1 clustering

Let p =
∑
v fv be the total fractional flow of the LP

solution on flow paths contained in GC . If p = O(1),
it suffices to route one demand pair to get a constant
fraction of the optimal solution, so we can suppose that
p > M for some sufficiently large M (different from
M∗ above).



In Phase 1 of the PLANE-EDP4 algorithm, they build
connected clusters R1, R2, . . . Rh with the following
properties. (i) Each demand is assigned to exactly one
cluster and the total demand assigned to Ri is Θ(1); (ii)
each edge lies in at most two Ri’s and (iii) the clusters
contain distinct nodes mi ∈ C which act as “boundary
representative” for each cluster. Note that it could be the
case that lots of clusters already contain sibling pairs. If
so, we can always get a constant fraction of p by simply
routing one pair in each such cluster. Thus it is assumed
that this is not the case, and that any remaining demand
is between terminals assigned to distinct clusters.

We now show how to modify their procedure to
obtain edge-disjoint clusters; this will result in a conges-
tion 1 routing for Phase 1. We do this by applying our
rooted clustering techniques (namely, the Paired Cluster
Capture Theorem 2.3) to the (edge-normalized) routing
of (fv/M

∗ : v ∈ V ) to C. This produces edge-disjoint
clusters that capture a constant total weight of demand
pairs. I.e., Ω(p) of our demand pair flows is captured.

3.2.1. C-Truncation Procedure: It turns out, how-
ever, that for our new Phase 2 routing, we also need
that each cluster contains a unique node from C. (This is
important for technical reasons later.) The Paired Cluster
Capture method will satisfy this extra constraint as long
as our original flows to C sent at most one unit of flow
through each node of C (i.e., any flow arriving at a node
of C should terminate there).

In C-truncation, we consider each demand ab one by
one. Consider the flow paths to C from a, b respectively.
If any of these flow paths uses more than one node of C,
we truncate it at the first such node v. Thus we think of
this flow now entering the root (i.e., outside face C) at
the node v instead of its original destination. The only
problem is when v has already been the destination for
a full unit worth of other flow paths; we then say v is
saturated. Whenever we get to a point where a node v
is saturated, then we drop the flow paths from ab that
we are trying to re-route to v. We charge any such lost
flow for ab to the previous demands which used v. Since
each node v has degree at most 4, the total charging that
involves flows through v is at most 3. Hence there is a
natural charging scheme where each surviving demand
flow gets charged at most 6 times by later demands
which are “blocked” by one of its flow paths to C.

Hence, we ultimately build clusters such that for each
node v, we can denote by m(v) the unique node of C in
v’s cluster. (As before, we can assume the case where
any siblings lie in distinct clusters.) We can now proceed
with these new clusters just as in PLANE-EDP4.

3.2.2. The Fractional OS Instance: To understand
Phase 1 routing, we must say something about the de-
mands for the Phase 2 routing. These arise from a frac-
tional Okamura-Seymour (OS) instance (all demands

have endpoints on C) which is created as follows.
For each terminal v with sibling v′ = σ(v). We create

a demand edge between m(v) and m(v′) of weight
fv (where we now use the values as modified by the
rooted clustering algorithm from the previous section).
In [5], it is shown that such a fractional collection
of demands (scaled down further by an appropriate
constant) satisfies the cut condition in GC . (Recall that
C is a simple cycle, since we are now looking at
a 2-node-connected instance GC .) Let us denote the
resulting demands by a demand graph H , where for
each f ∈ E(H), we let df ∈ [0, 1] denote the demand
value. Since both ends of any demand edge lie on the
face C, the OS Theorem (see [15]) states that for any
such instance, if the df ’s are integral, the cut condition
holds and GC +H is Eulerian, then the set of demands
is (integrally) routable.

We cannot yet apply the Okamura-Seymour Theorem
since H has fractional demands. Instead they construct
a subset of size Ω(p) of H’s edges, which also satisfy
the cut condition with demand weights 1; we describe
this next.

3.2.3. From Fractional to Integral OS Instances:
PLANE-EDP4 selects a subset of H’s demands via an
abstract capacity ring lemma (Theorem 3.5 [5]) as
follows. As noted, H’s demands obey the cut condition
in GC . They view these demands as occurring on an
“abstract ring” identified with C. For each pair of edges
ei, ej on C, there is an associated integer capacity µ(ij);
this value is just the minimum capacity of a cut in GC
that contains precisely two edges of C: ei and ej .

The ring lemma shows how to convert the fractional
demands of H into Ω(p) integral demands on the
ring which almost obey the capacities; moreover, if
the capacities µ(ij) come from a 2-connected graph
(which we assume GC is at this point), the chosen
integral demands actually do obey the cut condition.
The selected set of demands is denoted by a demand
graph H ′, and we will refer to them as the OS-selection
demands. (We mention that the ring lemma does not
require clusters to have Θ(1) demand, but only O(1)
demand - this is all we guarantee in present form of
Theorem 2.3.)

The OS-selection demands have the property that
at most one terminal v from any Ri is involved. So if
st ∈ H ′, then there is an associated f(s), f(t) in distinct
clusters such that s = m(f(s)) and t = m(f(t)). We
say that f(s), f(t) are the associated terminals with
this demand. Phase 1 routing refers to each associated
terminal v for the OS-selection demands, (at most one
per cluster) using their cluster’s capacity to route from v
to m(v). This incurs a congestion 2 in the old algorithm,
but only congestion 1 in the new clustering.



3.3. Phase 2 and the Overall Routing

The overall routing in PLANE-EDP4 is constructed
as follows. The path between some pair a, b will use
the path from a to m(a) in a’s cluster, followed by
some path from m(a) to m(b) (this is the Phase 2
routing), and finish by following the path from m(b)
to b using b’s cluster. Thus with the new clustering,
we have immediately reduced the congestion by 1, and
hence the overall routing has congestion 3 (using the
same Phase 2 routing from [5]).

In Phase 2 of PLANE-EDP4, a congestion 2 routing of
the OS-selection demands is achieved as follows. Note
that the OS-selection demands obey the cut condition,
but we also need the Eulerian condition. To do this,
let T be the odd-degree nodes in GC + H ′. Since
GC is connected and |T | is even, GC contains a T -
join J , i.e., J ⊆ E(GC) such that GC + H ′ + J
is Eulerian. We can now apply the Okamura-Seymour
Theorem to obtain a routing for H ′ in GC + J . This
together with the Phase 1 Routing (with our modified
Phase 1 clustering) now gives the desired congestion 3
result. We mention that congestion 3 was already proved
in an earlier manuscript of the authors, and appears in
the thesis [17].

In order to obtain the congestion 2 algorithm, the
clean edge-disjoint clusters produced above must share
their capacity with the Phase 2 routing. This is our next
task.

4. A CONGESTION 2 ALGORITHM FOR MEDP

We now describe our second enhancement to the
algorithm PLANE-EDP4 ([5]) to obtain a congestion 2
algorithm.

4.1. Reducing Congestion Across two Phases

The high level plan is as follows. Consider Z the set
of original associated terminals involved with the OS-
selection demands in H ′. For each v ∈ Z, let Pv be
the path from v to m(v) through its cluster. We refer
to these as stub paths. We have (by C-truncation) that
each |Pv ∩ V (C)| = 1. We have that H ′ obeys the cut
condition within GC , but to apply Okamura-Seymour,
we need a T -join J so that GC +H ′ + J has all even
degrees (recall that T are the odd-degree nodes of GC+
H ′).

Ideally, we could choose the OS-selection demands
(i.e., H ′) so that we do not need any stub paths to
create our T -join J (since we need the Pv’s for Phase
1 routing). This does not appear possible, but instead
we attempt to give some of the stub paths capacity
to GC so it can find a T -join. We need to show that
this can be done without sacrificing too many of the
demands/terminals Z. Let P1, P2, . . . , P2|E(H′)| be the
stub paths for Z = {v1, v2, . . . , vq}, and let G∗ be the

graph obtained by deleting their edges from GC . We
refer to (GC , H

′, P1, . . . , P2|E(H′)|) as an augmented
OS instance. In the end we can show

Theorem 4.1. Let (GC , H
′, P1, . . . , P2|E(H′)|) be an

augmented OS instance. Let T be the odd-degree nodes
of GC + H ′ and G∗ = GC \ ∪iPi. Then there ex-
ists Ω(|E(H ′)|) demands E′ with associated terminals
Z ′ ⊆ Z such that resetting G∗ := G∗ ∪ (∪v 6∈Z′E(Pv))
now includes a T -join J .

Hence we keep the stub paths for terminals in Z ′ so
they may route to our selected subset of demands in H ′

(Phase 1 routing), and use J to achieve Phase 2 routing.
(In fact, during this process we alter the T -set to some
T ′-set, so a little bit of care is needed; we discuss this
later.)

4.2. When all connected components of G∗ are T -even

Let C1, C2, . . . Cr be the connected components of
G∗. Since the paths all terminate at the cycle C, and
are assumed to only contain one node of C, we have
that V (C) is included in one of these components; let us
call it C1 and we refer to this as the C-component. This
implies that each Pi starts at some component Cj(i) and
terminates at C1. We now show

Lemma 4.1. For an augmented OS instance, if the
connected components C1, . . . , Cr of G∗ are all T -even,
then G∗ contains a T -join.

Proof: We use the following basic fact about joins
in a graph. For any connected graph, and even subset X
of its nodes, the set of edges of the graph contains an
X-join. Hence, a first key observation is that if none of
the Ci’s is T -odd (i.e., |T ∩Ci| is odd), then we can find
a T -join J in G∗. Since if Gi = G[Ci] is a component,
then since Ti = T ∩V (Gi) is even, Gi includes Ti-join;
the union of these joins is a T -join J .

Hence we could route the OS-selection demands in
GC+J by the Okamura-Seymour Theorem, since GC+
H ′ + J is Eulerian. Hence, we assume this is not the
case and so our objective becomes to fix the T -odd
components.

4.3. Sacrifices

4.3.1. Overview: The general strategy is to merge
any such odd components with C1. We do this by
sacrificing some of the Pi’s. By sacrificing Pi, we
mean that we remove the demand iσ(i) from our OS-
selection set E(H ′). If this demand is no longer present,
then we no longer need its stub path Pi for Phase
1 routing. Hence the edges of Pi can be included in
G∗. Since Pi has one end in C1, and the other end in
Cj(i), then in G∗ this has the effect of merging these
two components (and possibly others involving internal



nodes of Pi). We use this approach so as to merge
one-by-one any T -odd components in G∗ with the C-
component C1. Obviously we must do this in such a
way as to protect enough demands in H ′ from being
sacrificed.

4.3.2. Structure of T -odd components: Let us first
analyze the structure of a T -odd component Ci, i > 1
(we won’t be concerned with C1). By definition of T ,
|δGC+H′(Ci)| is odd. Since Ci ∩ C = ∅ this means
|δGC

(Ci)| is odd. (From now on δ will refer to δGC
.)

Since any path Pv with v 6∈ Ci contributes an even
number of edges to this latter cut (it starts and ends
outside Ci), we have that there are an odd number of
Pv’s with v ∈ Ci. We call Ci big if this number is
at least 3. Otherwise it is small and we have a unique
path Pv(i) starting in Ci, and an even number of paths
which may traverse it, each using an even number of
edges from δ(Ci). If Pv(i) is the only path intersecting
δ(Ci) for a small component Ci 6= C1, then we call
Ci isolationist. We do not like these. Note that the
component Ci is cut off from G∗ − Ci only by the
edges in the path Pv(i). In the following, we proceed
as though there are no such components; we can show
how to pre-process the instance to achieve the following
lemma (the proof is omitted here).

Lemma 4.2. An augmented OS instance can always be
processed so as to eliminate all isolationist components.

4.3.3. Selecting candidates for sacrifice: Greedily
consider demands ab ∈ H ′. We process a, b separately
according to the components, C(a), C(b) containing
them. (Recall that we now have C(a) 6= C(b).) If C(a)
is T -even or contains the outside face C we do nothing.
Otherwise C(a) is T -odd and is disjoint from V (C). We
try to protect a’s path Pa which starts in C(a) and ends
in the C-component C1. If C(a) is big, then we pick
some path Pz 6∈ {Pa, Pb} which also starts in C(a). Pz
is selected for sacrifice in the sense that zσ(z) is slated
for possible removal from H ′ if we ultimately keep ab.
We also say this demand zσ(z) protects the component
for a. Note that if zσ(z) is ultimately sacrificed, i.e.,
removed from H ′, then its path Pz is freed up, and this
has the effect of merging C(a) with the component C1

in G∗ (where G∗ now contains the edges from Pz). If
this does occur, then we would say that C(a) is merged.

Now let us consider the case C(a) is small. Here we
choose some Pz with z 6∈ C(a) that passes through
C(a). (Such a path exists since we have no isolationist
components.) We try to choose z such that z 6= b. If this
is possible, then we protect a/C(a) and select zσ(z) for
sacrifice as before. If this is not possible, then we call
the pair (or C(a))) ab cozy; it has the property that
only Pa, Pb intersect δ(C(a)). Such a demand is not
protected. In the end, we have that for every demand

ab we either determine that it is cozy, or we protect
both C(a), C(b) (by selecting for sacrifice up to two
other demands). We let FP denote an auxiliary graph
whose nodes are the demands, and there is an arc from
a demand ab to any other demand that was selected
for sacrifice to protect ab. We have that this graph has
out-degree at most 2.

4.3.4. Routing cozy demands: Note that either we
get a constant fraction of protected demands, or we end
up with Ω(p) cozy demands. In the latter case, we can
actually route a lot of cozy demands in one go.

Lemma 4.3. In an augmented OS instance where there
are Ω(p) cozy demands, it is possible to route all cozy
demands simultaneously.

Proof: Any cozy demand ab has the property that
say a lies in a component C(a) containing a single
terminal. Moreover, the path Pb routes through C(a)
and is the only such stub path doing so. We route a, b
by merging Pb with an appropriate path in C(a). Hence
the cozy demands are simultaneously routable.

So we assume from now on that all cozy demands
have been thrown out.

4.3.5. Sacrificing demands: Let us now examine FP .
Delete any unprotected nodes (i.e., demands) in this
graph. In what remains there are still q = Ω(p) protected
nodes, each of out-degree at most 2. Hence FP has at
most 2q edges. It follows by standard arguments that
there is a stable set of size Ω(q). Find a subgraph of
size Ω(q) and maximum degree O(1); now greedily pick
a stable set S. The demands not in the stable set S are
sacrificed.

Now let G∗ be the graph obtained from GC by delet-
ing the edges of paths Pa corresponding to any demand
in S (or adding to old G∗, stub paths for demands not
in S). We must have that in this graph every component
is T -even. If there was a T -odd component, then there
would be 2 and hence some such component C ′ that is
disjoint from C1 (the one including C). This component
must include one of the original Ci components, i > 1.
This means there is some path Pv with v ∈ Ci which
was not sacrificed (in particular, vσ(v) is not cozy). But
then it should correspond to a demand in S, which is
impossible since every demand in S was protected by
at least one (and up to two) demand that was sacrificed,
i.e., some such path Pw has all its edges in G∗; this
would merge Ci with C1, a contradiction.

This establishes

Lemma 4.4. Let (GC , H
′, P1, . . . , P2|E(H′)|) be an

augmented OS instance with neither isolationist nor
cozy components. Let S be a stable set in the auxiliary
graph FP and let G∗ be the graph obtained from GC
by deleting the edges of paths Pa corresponding to any



demand selected in S. Then, all connected components
in G∗ are T -even.

Thus there are no T -odd components in G∗, and so it
contains a T -join. There is one last complication. After
sacrificing so many demands, we are now trying to route
a new demand graph H ′′, consisting of the protected
demands in S only. So the odd-degree nodes in GC+H ′′

is some new set T ′ 6= T . However, the difference is
only on nodes in the outside face C, and these all lie in
a common component of G∗. Hence every component
of G∗ must also be T ′-even (as well as T -even). Thus
G∗ contains a T ′-join, and so by Okamura-Seymour
there are edge-disjoint paths in GC + G∗ that satisfy
the demands in H ′′. That is, we have a Phase 2 routing
with congestion 1 in GC+G∗. This can now be merged
with the Phase 1 routing which only uses the edges of
stub paths Pv that were protected, i.e., they did not use
edges in G∗.

5. CONCLUSIONS

A very interesting question is to develop methods to
get a constant factor approximation for the weighted
MEDP problem in planar graphs. Another direction is to
strengthen the natural LP relaxation to obtain a constant
integrality gap for all planar graphs (including the grid-
like structures). In a similar vein, it appears that the
techniques from Section 4 together with an additional
technical result, could give an O(1)-approximation for
Eulerian planar instances. This is slightly less natural
from the approximation perspective, but it gives a
strictly stronger result. We hope to include this in a
journal version.

REFERENCES

[1] M. Andrews, “Approximation algorithms for the edge-
disjoint paths problem via Räcke decompositions,” in
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